Terroir – Full Bibliography
1 Koehler, J. (2016). Where the Wild Coffee Grows: The Untold Story of Coffee from the Cloud Forests of Ethiopia to Your Cup. Bloomsbury USA, 108.
2 International Coffee Organization (2018). Trade Statistics.
3 Söndahl, M. R., and H. A. M. van der Vossen (2005). The Plant: Origin, Production and Botany. In: Illy, A., and R. Viani (eds.) Espresso Coffee: The Science of Quality (2nd ed.). Elsevier Academic Press, 22.
4 Vega, F. E.; Rosenquist, E.; and W. Collins (2003). Global project needed to tackle coffee crisis. Nature 425, 343. doi.org/10.1038/425343a
5 Koehler, J. (2016), 87.
6 Nakabayashi, T. (1978). Formation of organic acids from sucrose by roast. Journal of the Japanese Society of Food Science and Technology (Nippon Shokuhin Kogyo Gakkaishi), 25, 257–261.
7 Flament, I. (2002). Coffee Flavour Chemistry. John Wiley & Sons, 20.
8 Schmitt, C. B. (2006). Montane rainforest with wild Coffea arabica in the bonga region (SW Ethiopia): Plant Diversity, Wild Coffee Management and Implications for Conservation. Cuvillier Verlag, 4.
9 Bertrand, B.; Boulanger, R.; Dussert, S.; Ribeyre, F.; Berthiot, L.; Descroix, F.; and T. Joët (2012). Climatic factors directly impact the volatile organic compound fingerprint in green arabica coffee bean as well as coffee beverage quality. Food Chemistry, 135(4), 2575–83.
10 Ibid.
11 The Winecast (2017). Winecast: Slope and Aspect – YouTube. Accessed May 24, 2019. youtu.be/cmx7PvUNXYA
12 Toby’s Estate Coffee Roasters (2017). Knowledge Talks with Anabella Meneses. Accessed October 30, 2020. youtu.be/SQhPW65NdPY
13 Jha, S.; Bacon, C. M.; Philpott, S. M.; Ernesto Méndez, V.; Läderach, P.; and R. A. Rice (2014). Shade coffee: Update on a disappearing refuge for biodiversity. BioScience, 64(5), 416–428. doi.org/10.1093/biosci/biu038
14 Staver, C.; Guharay, F.; Monterroso, D.; and R. G. Muschler (2001). Designing pest-suppressive multistrata perennial crop systems: Shade-grown coffee in Central America. Agroforestry Systems 53(2), 151–70. doi.org/10.1023/A:1013372403359
15 Ibid.
16 Jha et al. (2014).
17 Muschler, R. G. (2001). Shade improves coffee quality in a sub-optimal coffee-zone of Costa Rica. Agroforestry Systems 51, 131–9. doi.org/10.1023/A:1010603320653
18 Vaast, P.; Bertrand, B.; Perriot, J. J.; Guyot, B.; and M. Genard (2006). Fruit thinning and shade improve bean characteristics and beverage quality of coffee (Coffea arabica L.) under optimal conditions. Journal of the Science of Food and Agriculture, 86(2), 197–204. doi.org/10.1002/jsfa.2338
19 Vaast et al. (2005).
20 World Coffee Research (n.d.). Arabica Coffee. Accessed November 2, 2020. varieties.worldcoffeeresearch.org/info/coffee/about-varieties/bourbon-and-typica
21 Bertrand et al. (2012).
22 Vaast et al. (2005).
23 Ibid.
24 Bertrand et al. (2012).
25 Cannell, M. G. R. (1985) Physiology of the Coffee Crop. In: Clifford, M. N., and K. C. Willson (eds.) Coffee. Springer. 108–134. doi.org/10.1007/978-1-4615-6657-1_5
26 DaMatta, F. M., and J. D. C. Ramalho (2006). Impacts of drought and temperature stress on coffee physiology and production: A Review. Brazilian Journal of Plant Physiology, 18(1), 55–81. dx.doi.org/10.1590/S1677-04202006000100006
27 DaMatta, F. M.; Ronchi, C. P.; Maestri, M.; and R. S. Barros (2007). Ecophysiology of coffee growth and production. Brazilian Journal of Plant Physiology, 19(4), 485–510. dx.doi.org/10.1590/S1677-04202007000400014
28 Ibid.
29 Ibid.
30 Food and Agriculture Organization of the United Nations (1977). Coffee. In: Better Farming Series of the FAO Economic and Social Development Series 3(23). Accessed November 1, 2020. www.fao.org/3/AD219E/AD219E00.htm#TOC
31 Camargo, M. B. P. de. (2010). The impact of climatic variability and climate change on arabic coffee crop in Brazil. Bragantia, 69(1), 239–47. doi.org/10.1590/S0006-87052010000100030; DaMatta et al. (2007).
32 de T. Alvim P. (1973). Factors affecting flowering of coffee. In: Srb, A.M. (ed.) Genes, enzymes, and populations. Basic Life Sciences, vol 2. Springer. doi.org/10.1007/978-1-4684-2880-3_13
33 Carvalho, A., and L. C. Monaco (1969). The Breeding of Arabica Coffee. In: Ferwerda, F. P., and F. Wit (eds.) Outlines of Perennial Crop Breeding in the Tropics, Miscellaneous Papers 4, 219.
34 Sakai, E.; Barbarosa, E. A. A.; Silveira, J. M. C.; and R. Pires (2013). Yield and bean size of Coffea arabica (Cv Catuaí) cultivated under different population arrangements and water availability. Engenharia Agrícola [online]. 33(1), 145–156. doi.org/10.1590/S0100-69162013000100015
35 Barbarosa et al. (2015).
36 World Coffee Research (2018). International Variety Trial Reports First Data. worldcoffeeresearch.org
37 Bertrand et al. (2012).
38 Alègre, G. (1959). Climats et caféiers d’Arabie. L’Agronomie Tropicale (Francia) 14(1), 23–58. In: DaMatta, F. M., and J. D. C. Ramalho (2006). Impacts of drought and temperature stress on coffee physiology and production: a Review. Brazilian Journal of Plant Physiology, 18(1), 55–81. doi:10.1590/s1677-04202006000100006
39 DaMatta et al. (2007).
40 Cannell, M. G. R. (1985).
41 Carvalho, A., and L. C. Monaco (1969). The Breeding of Arabica Coffee. In: Ferwerda, F. P., and F. Wit (eds.) Outlines of Perennial Crop Breeding in the Tropics, Miscellaneous Papers 4, 198. library.wur.nl/WebQuery/wurpubs/fulltext/455436
42 DaMatta and Ramalho (2006).
43 Cannell, M. G. R. (1974). Factors affecting arabica coffee bean size in Kenya. Journal of Horticultural Science, 49(1), 65–67. doi:10.1080/00221589.1974.11514552
44 Food and Agriculture Organization of the United Nations (2013). Soil Tillage in Africa: Needs and Challenges. FAO Soils Bulletin 69, Chapter 6. www.fao.org/3/T1696E/t1696e07.htm
45 Pavan, M. A., and J. C. D. Chaves (1996). The influence of coffee tree density on soil fertility. Londrina, PR (Brasil), 89–105 In: Paulo, E. M., and E. Furlani Jr. (2010). Yield performance and leaf nutrient levels of coffee cultivars under different plant densities. Scientia Agricola, 67(6), 720–6. dx.doi.org/10.1590/S0103-90162010000600015
46 Notaro, K. de A.; Medeiros, E. V. de; Duda, G. P.; Silva, A. O.; and P. M. de Moura (2014). Agroforestry systems, nutrients in litter and microbial activity in soils cultivated with coffee at high altitude. Scientia Agricola, 71(2), 87–95. doi.org/10.1590/S0103-90162014000200001
47 Winston, E.; Op de Laak, J.; Marsh, T.; Lempke, H.; and K. Chapman (2005). Coffee Plant and Site Selection. In: Arabica Coffee Manual for Lao-PDR. FAO Regional Office for Asia and the Pacific. www.fao.org/3/ae939e/ae939e03.htm#TopOfPage
48 Agriculture Victoria (2022). Managing Wet Soils | Planning farm drainage. Accessed March 10, 2022. agriculture.vic.gov.au/livestock-and-animals/dairy/managing-wet-soils/planning-farm-drainage
49 DaMatta, F. M. (2004). Ecophysiological constraints on the production of shaded and unshaded coffee: a review. Field crops research, 86(2–3), 99–114. doi:10.1016/j.fcr.2003.09.001.
50 United States Agency for International Development (n.d.) Coffee Production Training. Accessed October 30, 2020.
51 DaMatta (2004).
52 Paulo, E. M., and E. Furlani Jr. (2010). Yield performance and leaf nutrient levels of coffee cultivars under different plant densities. Scientia Agricola, 67(6), 720–726.
53 Ibid.
54 Aguilar-Martínez, J. A.; Poza-Carrión, C.; and P. Cubas (2007). Arabidopsis BRANCHED1 Acts as an Integrator of Branching Signals Within Axillary Buds. The Plant Cell 19(2), 458–72. doi:10.1105/tpc.106.048934
55 Ibid.
56 Ibid.
57 Notaro, K. D. A.; Medeiros, E. V. D.; Duda, G. P.; Silva, A. O.; and P. M. D. Moura (2014). Agroforestry systems, nutrients in litter and microbial activity in soils cultivated with coffee at high altitude. Scientia Agricola, 71(2), 87–95.
58 Cannell, M. G. R. (1973). Effects of irrigation, mulch and N-fertilizers on yield components of arabica coffee in Kenya. Experimental Agriculture, 9(3), 225–232.
59 Stiftung, H. R. Neumann (n.d.). The Story of Hanns R. Neumann Stiftung. Accessed Oct. 20, 2020. www.hrnstiftung.org/our-story/
60 Assis, G. A. D.; Scalco, M. S.; Guimarães, R. J.; Colombo, A.; Dominghetti, A. W.; and N. Matos (2014). Drip irrigation in coffee crop under different planting densities: Growth and yield in southeastern Brazil. Revista Brasileira de Engenharia Agrícola e Ambiental,18, 1116–1123. doi.org/10.1590/1807-1929/agriambi.v18n11p1116-1123
61,65 Carr, M. K. V. (2001). Review paper: the water relations and irrigation requirements of coffee. Experimental Agriculture, 37, 1–36. doi.org/10.1017/S0014479701001090
62 Crisosto, C. H.; Grantz, D. A.; and F. C. Meinzer (1992). Effects of water deficit on flower opening in coffee (Coffea arabica L.). Tree Physiology, 10(2), 127–139.
63 DaMatta, F. M., and J. D. C. Ramalho (2006). Impacts of drought and temperature stress on coffee physiology and production: a review. Brazilian Journal of Plant Physiology, 18, 55–81. doi: 10.1590/S1677-04202006000100006
64 Wallis, J. A. N. (1963). Water use by irrigated arabica coffee in Kenya. The Journal of Agricultural Science, 60(3), 381–388. doi: 10.1017/s0021859600011977
66 Fisher, N. M., and G. Browning (1978). Some Effects of Irrigation and Plant Density on the Water Relations of High Density Coffee (Coffea arabica L.) in Kenya. Journal of Horticultural Science. doi: 10.1080/00221589.1979.11514842
67 Carr, M. K. V. (2001). Review paper: the water relations and irrigation requirements of coffee. Exp. Agric, 37, 1–36. doi: 10.1017/S0014479701001090
68 de Souza, H. N.; de Goede, R. G.; Brussaard, L.; Cardoso, I. M.; Duarte, E. M.; Fernandes, R. B.; Gomes, L.C.; and M. M. Pulleman (2012). Protective shade, tree diversity and soil properties in coffee agroforestry systems in the Atlantic Rainforest biome. Agriculture, Ecosystems & Environment, 146(1), 179–196. doi:10.1016/j.agee.2011.11.007
69 Jones, D. L.; Cross, P.; Withers, P. J.; DeLuca, T. H.; Robinson, D. A.; Quilliam, R. S.; Harris, I. M.; Chadwick, D. R.; and G. Edwards-Jones, (2013). Nutrient stripping: the global disparity between food security and soil nutrient stocks. Journal of Applied Ecology, 50(4), 851–862.
70 Salamanca-Jimenez, A.; Doane, T. A.; and W. R. Horwath (2017). Nitrogen use efficiency of coffee at the vegetative stage as influenced by fertilizer application method. Frontiers in Plant Science, 8, 223.
71 Melke, A., and F. Ittana (2015). Nutritional requirement and management of arabica coffee (Coffea arabica L.) in Ethiopia: national and global perspectives. American Journal of Experimental Agriculture, 5(5), 400.
72 Ibid.
73 Risorto, S. P. (2018). Effects of potassium fertilizer on soluble solid content (BRIX) of substrate grown raspberries (Doctoral dissertation, California State Polytechnic University, Pomona). https://scholarworks.calstate.edu/concern/theses/ng451k66h
74 Nagao, M. A.; Kobayashi, K. D.; and G. M. Yasuda (1986). Mineral deficiency symptoms of coffee. www.ctahr.hawaii.edu/oc/freepubs/pdf/RES-073.pdf
75 Gallo, P. B.; Van Raij, B.; Quaggio, J. A.; and L. C. E. Pereira (1998). NPK fertilization for high tree density coffee plantations. Bragantia. 58. 341–351. scielo.br/scielo.php?script=sci_abstract&pid=S0006-87051999000200014&lng=pt&nrm=iso&tlng=en
76 Smart! Fertiliser Management (n.d.). Guidelines for Growing Coffee. Accessed May 12, 2018. https://web.archive.org/web/20180512013713/http://www.smart-fertilizer.com/articles/guidelines-of-coffee-growing
77 Bittenbender, H. C., and V. E. Smith (2008). Growing coffee in Hawaii, revised edition. College of Tropical Agriculture and Human Resources (CTAHR), Manoa, Hawai’i, USA: University of Hawaii at Manoa. www.ctahr.hawaii.edu/oc/freepubs/pdf/coffee08.pdf
78 Beaumont, J. H., and E. T. Fukunaga (1958). Factors affecting the growth and yield of coffee in Kona, Hawaii. Hawaii Agricultural Experiment Station Bulletin 113. www.ctahr.hawaii.edu/oc/freepubs/pdf/B-113.pdf
79 Cooil, B. J., and M. Nakayama (1953). Carbohydrate balance as a major factor affecting yield of the coffee tree. Hawaii Agricultural Experiment Station Progress Notes.
80 Food and Agriculture Organization of the United Nations, 1977. Pruning Coffee Trees. In: Better Farming Series: Coffee. ISBN 92-5-100624-5
81 Carr, M. K. V. (2001). Review paper: the water relations and irrigation requirements of coffee. Experimental Agriculture, 37, 1–36.
82 Beaumont, J. H.; Lange, A. H.; and E. T. Fukunaga (1956). Initial growth and yield response of coffee trees to a new system of pruning. In Proceedings of the American Society for Horticultural Sciences, 67, 270–276.
83 Gautz, L. D.; Bittenbender, H. C.; and S. Mauri (2002). Effect of mechanized pruning on coffee regrowth and fruit maturity timing. In 2002 ASAE Annual Meeting (p. 1). American Society of Agricultural and Biological Engineers. doi: 10.13031/2013.9148
84 Silva, M. do C.; Várzea, V.; Guerra-Guimarães, L.; Azinheira, H. G.; Fernandez, D.; Petitot, A-S; Bertrand, B.; Lashermes, P.; and M. Nicole (2006). Coffee Resistance to the Main Diseases: Leaf Rust and Coffee Berry Disease. Brazilian Journal of Plant Physiology, 18(1), 119–47. doi.org/10.1590/S1677-04202006000100010
85 Koehler, J. (2018). Coffee Rust Threatens Latin American Crop; 150 Years Ago, It Wiped Out an Empire. Accessed November 1, 2020. www.npr.org/sections/thesalt/2018/10/16/649155664/coffee-rust-threatens-latin-american-crop-150-years-ago-it-wiped-out-an-empire
86 World Coffee Research (n. d.). Applied R&D for Coffee Leaf Rust: Cross-Cutting Initiatives to Fight Coffee Leaf Rust on Multiple Fronts. worldcoffeeresearch.org/work/applied-rd-coffee-leaf-rust/
87 Silva et al. (2006).
88 Encyclopædia Britannica. Coffee Rust. Accessed October 30, 2020. www.britannica.com/science/coffee-rust
89 Soque, N. (2019). Using Fungicides to Treat Coffee Leaf Rust. Accessed October 30, 2020. www.perfectdailygrind.com/2019/05/using-fungicides-to-treat-coffee-leaf-rust/
90 Copper Development Association (n.d.). Uses of Copper Sulfate. Accessed October 30, 2020. copperalliance.org.uk/about-copper/copper-compounds/uses-copper-sulphate/
91 Adejumo, T. O. (2005). Crop protection strategies for major diseases of cocoa, coffee and cashew in Nigeria. African Journal of Biotechnology, 4(2), 143–150. www.academicjournals.org/AJB
92 de Resende, M. L.; Pozza, E. A.; Reichel, T.; and D. Botelho (2021). Strategies for coffee leaf rust management in organic crop systems. Agronomy, 11(9), 1865. https://doi.org/10.3390/agronomy11091865
93 Toniutti, L.; Breitler, J. C.; Etienne, H.; Campa, C.; Doulbeau, S.; Urban, L.; Lambot, C.; Pinilla, J. H.; and B. Bertrand (2017). Influence of environmental conditions and genetic background of arabica coffee (C. arabica L) on leaf rust (Hemileia vastatrix) Pathogenesis. Frontiers in Plant Sciences. Nov 28(8): 2025. doi:10.3389/fpls.2017.02025
94 Adejumo (2004).
95 International Coffee Organization (2016). Assessing the Economic Sustainability of Coffee Growing. Accessed October 30, 2020. www.ico.org/documents/cy2015-16/icc-117-6e-economic-sustainability.pdf
96 Clifford, M. N. (Ed.). (2012). Coffee: botany, biochemistry and production of beans and beverage. Springer Science & Business Media.
97 Silva et al. (2006).
98 Waller J. M. (1985) Control of Coffee Diseases. In: Clifford , M. N.; and K. C. Willson (eds.) Coffee. Springer. doi.org/10.1007/978-1-4615-6657-1_9
99 Van Der Vossen, H. A. M.; and D. J. Walyaro (1980). Breeding for Resistance to Coffee Berry Disease in Coffea arabica L. II. Inheritance of the Resistance. Euphytica 29, 777–91. doi.org/10.1007/BF00023225
100 Silva et al. (2006).
101 Flood, J. (Ed.). (2010). Coffee wilt disease. CAB International. 7–27.
102 Girma, A.; Million, A.; Hindorf, H.; Arega, Z.; Teferi, D.; and C. Jefuka (2009). Coffee wilt disease in Ethiopia. In: Coffee Wilt Disease (2009). Flood, J. (ed.). CAB International.
103 Waller, J. M.; Bigger, M.; and R. J. Hillocks (2007). Coffee Pests, Diseases and Their Management. CAB books. 231–257.
104 Delassus, M. (1954). La trachéomycose du caféier. Contributions à l’Etude du Caféier en Côte d’Ivoire. Bulletin Scientifique, 5(17), 345–348. In:
Waller et al. (2007).
105 Waller et al. (2007).
106 Ibid.
107 Campos, V. P. (2002). Coffee nematode survey in Minas Gerais state. Brazil. Research Report of the Grant by PNP&D/cafe. EMBRAPA, Brasilia.
108 Herve, G.; Bertrand, B.; Villain, L.; Licardie, D.; and C. Cilas (2005). Distribution analyses of Meloidogyne spp. and Pratylenchus coffeae sensu lato in coffee plots in Costa Rica and Guatemala. Plant Pathology, 54: 471–5. doi:10.1111/j.1365-3059.2005.01206.x
109 Campos, V. P., and J. R. Silva (2008). Management of Meloidogyne spp. in coffee plantations. In: Souza, R. M. (ed.) Plant-parasitic nematodes of coffee. Springer. doi.org/10.1007/978-1-4020-8720-2_8
110 Waller et al. (2007).
111 Waterhouse, D. F., and K. R. Norris (1989). Biological Control: Pacific Prospects – Supplement 1. Australian Centre for International Agricultural Research. Accessed October 30, 2020. core.ac.uk/download/pdf/6377296.pdf
112 Waller et al. (2007).
113 The Economist (2019). A cheap way to protect coffee crops from boring beetles. Accessed October 30, 2020. www.economist.com/science-and-technology/2019/03/07/a-cheap-way-to-protect-coffee-crops-from-boring-beetles
114 McNutt, D. N. (1975) Pests of coffee in Uganda, their status and control. Pest Articles & News Summaries 21(1), 9–18. doi:10.1080/09670877509411482
115 Brun, L. O., and D. M. Suckling (1992). Field selection for endosulfan resistance in coffee berry borer (Coleoptera: Scolytidae) in New Caledonia. Journal of Economic Entomology 85(2), 325–34. doi.org/10.1093/jee/85.2.325
116 Waller et al. (2007).
117 Ibid.
118 Oliveira, C. N. de; Neves, P. O. J.; and L. S. Kawazoe (2003). Compatibility between the entomopathogenic fungus Beauveria bassiana and insecticides used in coffee plantations. Scientia Agricola, 60(4), 663–7. doi.org/10.1590/S0103-90162003000400009
119 Jacobs, R. M. and N. J. Yess (1993). Survey of imported green coffee beans for pesticide residues. Food Additives & Contaminants, 10(5), 575–577. doi: 10.1080/02652039309374180
120 Mekonen, S.; Ambelu, A.; and P. Spanoghe (2015). Effect of household coffee processing on pesticide residues as a means of ensuring consumers’ safety. Journal of Agricultural and Food Chemistry 63(38), 8568–8573. doi:10.1021/acs.jafc.5b03327; Sakamoto, K.; Nishizawa, H.; and N. Manabe (2012). Behavior of pesticides in coffee beans during the roasting process. Shokuhin Eiseigaku Zasshi 53(5): 233–236. Japanese. doi:10.3358/shokueishi.53.233, PMID:23154763
121 Food Standards Australia New Zealand (2010). Survey of chemical contaminants and residues in espresso, instant and ground Coffee. www.foodstandards.gov.au/science/surveillance/documents/Survey%20of%20chemical%20contaminants%20and%20residues%20in%20coffee1.pdf
122 Bunn, C.; Läderach, P.; Rivera, O. O.; and D. Kirschke (2015). A bitter cup: climate change profile of global production of arabica and robusta coffee. Climatic Change, 129(1), 89–101. doi.org/10.1007/s10584-014-1306-x
123 van Vuuren, D. P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G. C.; Kram, T.; Krey, V.; Lamarque, J.-F.; Masui, T.; Meinshausen, M.; Nakicenovic, N.; Smith, S. J.; and S. K. Rose (2011). The representative concentration pathways: An overview. Climatic Change 109(5). doi.org/10.1007/s10584-011-0148-z
124 Zullo, J.; Pinto, H. S.; Assad, E. D. et al. (2011). Potential for growing arabica coffee in the extreme south of Brazil in a warmer world. Climatic Change 109, 535–48. doi.org/10.1007/s10584-011-0058-0
125 Bunn et al. (2015).
126 Ibid.
127 Davis, A. (2013). Variety Cupping Discussions. YouTube video. Accessed October 31, 2020. https://youtu.be/u1J67zSDlG4
128 Ibid.
129 Bramel, P.; Krishnan, S.; Horna, D.; Lainoff, B. and C. Montagnon (2017). Global conservation strategy for coffee genetic resources. Crop Trust and World Coffee Research, 72.
130 Davis, A. (2013).
131 Davis, A. P.; Chadburn, H.; Moat, J.; O’Sullivan, R.; Hargreaves, S.; and E. N. Lughadha (2019). High extinction risk for wild coffee species and implications for coffee sector sustainability. Science Advances 5(1) eaav3473. doi:10.1126/sciadv.aav3473
132 Nordic Barista (2013). Aaron Davis – Variety Cupping Discussion. Accessed November 1, 2020. https://youtu.be/u1J67zSDlG4
133 Vaast, P.; Harmand, J. M.; Rapidel, B.; Jagoret, P.; and O. Deheuvels (2016). Coffee and cocoa production in agroforestry — A climate-smart agriculture model. In: Torquebiau, E. (ed.) Climate change and agriculture worldwide. Springer. doi.org/10.1007/978-94-017-7462-8_16
134 Jha et al. (2014).
135 Vaast et al. (2016).
136 Jha et al. (2014).
137 Ibid., using data from the United Nations FAO in 2010.
138 Jha et al. (2014).
139 Vaast et al. (2016).
140 Nordic Barista (2013).
141 Bramel, P.; Krishnan, S.; Horna, D.; Lainoff, B. and C. Montagnon (2017). Global conservation strategy for coffee genetic resources. Crop Trust and World Coffee Research, 72.
142 Ibid.
143 Philpott, S. M.; Arendt, W. J.; Armbrecht, I.; Bichier, P.; Diestch, T. V.; Gordon, C.; Greenberg, R.; Perfecto, I.; Reynoso-Santos, R.; Soto-Pinto, L.; Tejeda-Cruz, C.; Williams-Linera, G.; Valenzuela, J.; and J. M. Zolotoff (2008). Biodiversity loss in Latin American coffee landscapes: Review of the evidence on ants, birds, and trees. Conservation Biology 22(5). doi.org/10.1111/j.1523-1739.2008.01029.x
144 Soto-Pinto, L.; Anzueto, M.; Mendoza, J.; Ferrer, G. J.; and B. de Jong (2010). Carbon sequestration through agroforestry in indigenous communities of Chiapas, Mexico. Agroforestry Systems 78(39). doi.org/10.1007/s10457-009-9247-5